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Abstract 

Attention is drawn to a hitherto-neglected instru- 
mental consideration in Bragg scattering. It requires 
a new sin 0 factor to be included in expressions for 
Bragg reflectivity. The factor, which arises out of a 
consideration of mosaic spread is also relevant to 
scattering from a perfect single crystal. The scattering 
process is examined within a framework of neutron 
triple-axis spectrometry and implications of the effect 
for normalization of the instrumental resolution func- 
tion in that connection are examined in detail. 

I. Introduction 

In 1958, Caglioti, Paoletti & Ricci first considered 
resolution effects in triple-axis neutron spectrometry. 
In 1963 Collins published his paper on the subject 
and in 1967, Cooper & Nathans proposed their 
Gaussian model. They described how limited resolu- 
tion could be simulated by convoluting the scattering 
function with a Gaussian ellipsoidal distribution in 
four dimensions, and gave details of its form. An 
extension of the Cooper & Nathans formalism was 
subsequently employed by Samuelsen, Hutchings & 
Shirane (1970) and by Werner & Pynn (1971) to take 
account of resolution-function normalization. The 
following year Dorner (1972) gave a detailed physical 
analysis. He pointed out that for a correct intercom- 
parison of experimental data at different wavelengths, 
for which in general the primary neutron beams will 
have different intensities and wavelength spreads, the 
normalization of the Cooper & Nathans (1967) 
Gaussian ellipsoidal function was significant. He re- 
computed its form. 

Dorner also remarked upon what he thought to be 
two misprints or errors in the Cooper & Nathans 
(1967) paper. Firstly, vertical mosaic contributions 
involving monochromator and analyser Bragg scatter- 
ing factors tan Oa and tan 0M should have been 
replaced by sin Oa and sin 0M in Cooper & Nathans 
(1967) equation (6), which is true. Secondly, he sug- 
gested that sin Oa and sin 0M factors arising from 
vertical mosaic integrations should be cancelled from 
the normalization function. The existence of such 
factors had not been seriously considered by previous 
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authors and in subsequent publications (Tucciarone, 
Lau, Corliss, Delpalme & Hastings, 1971 ; Chesser & 
Axe, 1973) his conclusion has been endorsed. With 
these publications we disagree. In this study we give 
theoretical arguments for the recognition of sin 0 fac- 
tors in reflectivity measurements as reflections of a 
genuine physical effect and show that experimental 
evidence supports our claim. This is not to say that 
all published measurements involving the reflectivity 
are incorrect; in most cases a method of analysis has 
been used in which the recommended factor cancels 
out. Published expressions for resolution-function 
normalization factors must, however, be modified. 

In the body of this paper we take the trail blazed 
by the published literature. Firstly, we follow the 
formalism of Cooper & Nathans (1967) for Bragg 
scattering. In § 3 we introduce Dorner's semi-classical 
argument (Dorner, 1972) and show where we believe 
it to be fallacious. In § 4 we cite confirmation of our 
hypothesis from published reflectivity data of Chesser 
& Axe (1973) and in § 5 we summarize our con- 
clusions. 

In Appendix I we parallel the content of the body 
of the paper with a formal development. Our principal 
theoretical contribution to reflectivity measurement 
there is embodied in (31). We give a detailed deriva- 
tion in formal terms because of its general application, 
but also in part to allay any fears that the result arises 
from incorrect probability-function normalization, a 
possibility first suggested by Chesser in a private 
communication to Dorner (1972) and referred to later 
in his paper with Axe (Chesser & Axe, 1973). 

In Appendix II we detail simple changes which 
can be made to expressions in the published literature 
(Tucciarone, Lau, Corliss, Delpalme & Hastings, 
1971; Dorner, 1972; Chesser & Axe, 1973) to make 
them conform with our investigation. 

2. Bragg scattering from a single crystal. 
The reflectivity 

The flux Ff(kf) emerging from a crystal after Bragg 
scattering of an incident beam of spectral distribution 
Fi(k~) is given by equation (33) of Dorner's (1972) 
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paper: 

Ff(kf ) dkf 

-2L\ T~S / \ ; o  

+~" + ~ ,  + a2 /302 ~- 82 F,(k,) dkf, (1) 

where we follow the notation of Cooper & Nathans 
(1967). These authors write 0M and kF for the most 
probable Bragg scattering angle and the most prob- 
able final momentum, respectively, when these terms 
refer to the 0 and k appropriate to scattering by 
mosaic elements at the peak of the mosaic distribu- 
tion. In fact we have set 

AM =(Akf/kF)tan OM, (2) 

eM = 2r/~ sin 0M. (3) 

Subscripts M (for monochromator) have been 
retained here simply to allow the formulas to be used 
consistently in the arguments of later sections. 

Divergence angles y~ and 8~ in and perpendicular 
to the most probable scattering plane are simply 
related to the components of final momentum kf, 

Akf=kf-kF=(Akf ,  kF?t, k ~ ) .  (4) 

Parameters ao, at ,  /30, fit are the divergence angles 
of the collimators before and after scattering in and 
perpendicular to the most probable scattering plane, 
whilst r/M and r/~ are the in-plane (horizontal) and 
perpendicular (vertical) mosaic-spread widths. The 
normalization factor Po is given by 

(~0 2 1'-1/2 P° = (27r)1/2 + ~-M'M ~ ' (5) 

and for the moment we take NM to be an essentially 
energy-independent normalization factor of the form 

NM =(27r) -l PM , .  ( 6 )  
r/Mr/M 

Here we have introduced the quantity PM that in 
effect functions as a reflectivity coefficient for the 
crystal. Explicitly it may be identified with the 
coefficient ~(kf) in (29). From (31) we find 

PM m ~ ( k e ) -  ~ F-m(kF' 0) (7) 
2 sin 0M FiH(kF, 0)' 

which represents it in terms of an outgoing to 
incoming peak-flux ratio. The most direct way of 
measui'ing it is to determine the peak-count ratio 
FyH(kF, O)/Fin(kF, 0) with no vertical collimation and 
a well defined 0M, whereupon (7) applies directly. In 
a situation where instrumental effects are significant 
one may turn to § 4 and determine the reflectivity 
coefficient in (19). This may require a full evaluation 
of the integrals in (16). In any event we choose PM 

to represent the intrinsic crystal reflectivity contribu- 
tion to the normalization factor NM. We justify this 
choice in the next section where we analyse the scat- 
tering in a manner proposed by Dorner (1972). 

3. The Dorner normalization 

Dorner seems to be the only person who has 
attempted to realize the scattering using a classical 
picture (Dorner, 1972). His reasoning leads to the 
replacement of NM by NMO (Chesser & Axe, 1973), 
where 

NMo = (27r) -I/2 PMo 
2r/~ sin 0M' (8) 

and PMo is his intrinsic crystal reflectivity. 
Let us recall his argument. 
We imagine a fan of k vectors spread in a direction 

normal to the most probable scattering plane. The 
spread angle is proportional to the incident collima- 
tion parameter/30. Let the vectors represent neutrons 
incident with momentum k~ at the most probable 
in-plane scattering angle for Bragg reflection. In the 
arrangement contemplated all emerging neutrons are 
counted. If the vertical scattering of our fan of 
neutrons is independent of the Bragg condition which 
determines scattering in the horizontal plane we 
should expect the scattering cross section to be pro- 
portional to the collimation parameter /30 and 
independent of the incident Bragg angle 0M. This is 
Dorner's proposition. The vertical spread of vectors 
should contribute to scattering in a manner indepen- 
dent of energy. 

Let us now look at the theoretical implication. The 
vertical spread is represented by the tS~ terms in (1). 
If we omit the final collimator, the vertical contribu- 
tion to the final scattering is given by 

exp e~  +/3o2,1J dS. 

= 27reM/3o = 4rr/3o~7~ sin 0M. (9) 

The theory predicts a sin 0M energy dependence. This 
we do not want, so we introduce the normalization 
factor NMo which kills it. 

In the above discussion there is an error. The scat- 
tering of the vertical fan of neutrons is not indepen- 
dent of the horizontal Bragg condition. For scattering 
to take place at all the energy of the incident neutrons 
is controlled. The magnitude of the momentum of 
the fan of incident neutrons is controlled. The fact 
that neutrons out of the most probable scattering 
plane can be scattered at all is a function of the 
vertical mosaic spread of the scattering crystal. The 
probability of scattering any such neutron depends 
critically on the angle the reciprocal-lattice Bragg 
vector of such a neutron makes with the most probable 
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Bragg vector lying in the most probable scattering 
plane. This angle for an incident wave vector of 
magnitude kt is proportional to k~ and inversely 
proportional to sin OM. The geometry is displayed in 
Fig. 1. 

The contribution to scattering we then expect is 
proportional to a population factor fv, where 

fv=(27r)U2ri~ exp - ~  2sinOMri'M] J' 

where 80 is the angle of inclination of the incident 
neutron and (61 - 60)/2 sin OM is the angle of inclina- 
tion of the Bragg scattering vector to the most prob- 
able scattering plane. The full contribution is propor- 
tional to 

F~, = ~ exp {-½(6o/flo)2}fv dSo d6, 

= (2zr)l/2flo2 sin OM. (10) 

With this argument the presence of the factor sin OM 
comes as no surprise. As the Bragg angle changes so 
the inclination of the Bragg vector associated with an 
incident wave vector making a constant angle with 
the most probable scattering plane varies with a sin OM 
dependence. The Dorner cancellation is not needed. 
The sin OM dependence is real. The use of the nor- 
malization factor NMO is no longer justified. 

4. Experimental verification of normalization Nm 

As evidence of the correctness of our formulation 
with NM replacing NMO we look at the paper of 
Chesser & Axe (1973). They give graphs of the vari- 
ation of the analyser reflectivity PAO with energy. 
(They follow Dorner's analysis.) They use a spec- 
trometer with three crystals, a monochromator (M), 
a sample (S), and an analyser (A) as depicted in Fig. 
2. They make measurements of reflectivity without 
the final collimator. 

Let us repeat the calculation. 
The flux of neutrons emerging from the collimator 

following the sample is given by a simple modification 
of the Cooper & Nathans expression [equation (1)], 

F,(k,) 

= Fo(k,)NMNsPoP, exp { - I [  ( AM-2As  + T2) 2 
rim 

+ + 
ao ris 

a i / \ a2/  

where 

p,=(2rr),/2( 1 +-%5 1 + 1 )  -'/2 

(ll) 

(12) 

and 

[ ( 1 1 ' ~ - ' 7 - '  1 
Ds = e2 + e 2 + f12 +-~ ) J + fl--~2" (13) 

Similarly, the neutron flux emergent from the analyser 
without a final collimator is given by 

Ff(kf ) = Fo( kF)NMNsNAPoPt p 2 

xexp { - -~ [ (AM --2As +2AA + Y3) 2 

rim 

(2AM--2As +2AA +T3)2 
+ - - -  

OL o 

+ 2AA-- 2As + Y3. 
Ol 1 

+ + 
ris k a2 / 

+ (AAri+A Y3)2 +(eZA+Ds')-'6~]}, (14) 

where 

e2=(2=)'/2(Ds +eA2) -'/2. (15) 
We are interested in the ratio A of scattering ampli- 

tudes before and after the analyser, where 

a = ~ Ff(kf) dkf/~ F~(k,) dk,. (16) 

In general this will be a complicated function of the 
most probable energy OF. The integrals can be separ- 
ated into horizontal contributions dependent on Ak 

\ 61-6o 
2sinO M 

Fig. 1. Geometry of the sin 0 M factor. 

SOURCE 

DETECTOR 

Fig. 2. The spectrometer configuration. 
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and 7}/2 or 73 and a vertical contribution dependent 
upon 82 or 83, such that 

A = NAAHAv. (17) 

If we make the reasonable approximation AM = As = 
AA one can show by direct computation that the 
horizontal component of the ratio An becomes 
independent of energy. The vertical component is 
then given by 

Av = (2"/'r) '/2eA • (18)  

The whole ratio takes the form 

A = (27r) '/2 NAAueA, (19) 

which has the simple sin 0 A energy dependence pre- 
dicted in a simple way by (9) and (10). Now with the 
Dorner normalization NAo this sin OA dependence is 
explicitly eliminated and theoretically we should 
expect it to reappear in the experimentally measured 
reflectivity parameter PAD" Whereas Dorner would 
expect the experimentally measured reflectivity PAd 
to be only a slowly varying function of energy, reflect- 
ing an intrinsic property of the crystal material, we 
predict that in addition it should vary in proportion 
to sin OA or inversely in proportion to k F or  to V 2. A 
glance at the published reflectivity curves of Chesser 
& Axe (1973) reveals that the variation with energy 
is almost wholly described (Fig. 3) by an to~ ~/2 vari- 
ation. Indeed, the variation in 002 scattering is, within 
experimental error, totally of this form. We suggest 
that the variation should be regarded as a con- 
sequence of the process of measurement and not 
indicative of any intrinsic crystal property. This view 
indicates the choice of an essentially constant func- 
tion for the normalization function NA. We propose 
(6) for its form and choose PA to represent the intrinsic 
reflectivity. Then we find experimentally that PA being 
proportional to to~2pAo is almost a constant function 
of energy. 

5. Conclusions 

We have demonstrated that Dorner's approach to the 
problem of Bragg scattering proves useful when one 
wishes to analyse the energy dependence of the 
Cooper & Nathans resolution function in triple-axis 
spectrometry. Our application of these ideas leads us 
to the opinion that, contrary to what Dorner proposed 

~O~2 pAO 200] 
, , ~ 

0 20 40 

Pyrolytic Graphite 002 

Pyrolytic Graphite 004 

ENERGY (meV) 

Fig. 3 Energy variation of w/2pAo. 

in his original paper (Dorner, 1972), the original for- 
mulation of Cooper & Nathans (1967) is not in error. 
When one takes into account a realistic picture of a 
crystal with mosaic spread the appearance of a sin 0 
factor in the measured reflectivity becomes a natural 
physical feature. Furthermore the feature is clearly 
evident in the reflectivity curves published in 1973 by 
Chesser & Axe. Our researches suggest that the 
resolution function specified by Chesser & Axe be 
redefined, NM and NA being given by (6) rather than 
(8). In addition, this modification should be used in 
any application to inelastic neutron scattering where 
PM and PA may be assumed constant. 

We hope that our discussions give a clearer picture 
of the features of Bragg scattering relevant to the 
normalization of the resolution function and that it 
will prove useful in future applications to spec- 
trometer measurements of neutron scattering where 
Bragg reflectivity is of significance. 

I am particularly grateful to Drs R. D. Lowde and 
M. T. Hutchings at UKAEA Harwell for suggested 
improvements to my original manuscript and their 
interest. I have received from them notice of other 
reflectivity curves, all of which exhibit the to - '/2 
energy dependence. 

APPENDIX 1 

A formal derivation of the reflectivity factor 

Let the mosaic spread of a crystal be defined by a 
separable population-density distribution function P 
of vertical and horizontal angular displacements ~', ~: 
of Bragg lattice vector from the most probable vector 
-r such that in coordinate axes relative to -r we have 

AT-- (A~, ~:, ~).  (20) 

The sharply peaked separable population distribution 
must be normalized with respect to these angular 
displacements. We have 

P(~, ~')= P.(~)Pv(~), (21) 

where 
[.-~oo Pv(~) d~" = j_oo PH(~:) d~ = 1. (22) 

We now consider Bragg scattering with flux Fi(ki) dk; 
incident upon the crystal and emergent flux Fi(ky ) dky, 
where, following the notation of Cooper & Nathans 
(1967), we have 

ki = kl + Aki, 
(23) 

k f = k F + A k f ,  

Aki = ( Aki, k17o, ki80), 
(24) 

Aks = (Aks, k~7,, k~,) ,  

in coordinate systems relative to vectors k~ and kr:, 
respectively. 
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Now for Bragg scattering we have 

ki = kf, kt = kF = k. (25) 

Since A,t= A k y -  Aki we find 

A.t = [0, r ( ~ ) ,  rk2s~mO ] / 8 ' -  8o , ] ,  (26) 

where 

2k sin 0 = r. (27) 

Differentiation of the constraint (27), keeping r con- 
stant, leads to the relation 

3'0 = 3', + 2 T tan 0. (28) 

This shows us (Cooper & Nathans, 1967) that the 
angle of incidence 3'0 is uniquely constrained to be a 
function of the emergent angle 3', and final momen- 
tum ky. 

We are now in a position to record an expression 
for the emergent flux, 

Ff(kf) dky= [ ffo ° F~(k,) 

×p(3 'o+3' ,  8 , -8o~  ] 
2 ' sTn dk . (29) 

It represents the emergent flux for an incident beam 
with 3'0, restricted by (28), arising from contributions 
with a full range of incident vertical divergence angles 
8o. Our energy-dependent physical reflectivity is 
~(ks). 

We shall now elucidate the effect of vertical com- 
ponents of the beam. We replace dkf by k~ dkf  d3", dS, 
and integrate over 8, to obtain the flux as a function 
of horizontal divergence angle and final momentum, 

Fm(kl, 3",) dkl d3", = f foo f foo Fi(k,) 

p(3", + 3'0 8, - 8o~ × 2 '  /dSo dSi 
\ 

x ~(ks) dk¢ d3',. (30) 

We change from variable 8, to x, where x =  
(81-  80)/2 sin O, and integrate to obtain the relation 

Ffn(kf, 3',) dkf  d3't = 2 sin OFm(k,, 3'0) 

x P , ( ~ ) ~ ( k l ) d k  I d3',, 

(31) 

where 

Fro(k,, Yo)= ~-~oo F~(k,) dSo. (32) 

The vertical mosaic effects have been such as to 
introduce an overall factor 2 sin 0 into our expression 
for the emergent horizontal flux. The factor 2 sin 0 is 
universal. The effect of horizontal mosaic is not, but, 
in the Gaussian approximation considered in the 
body of this paper, in reflectivity measurement 
horizontal effects cancel out. The true reflectivity 
function ~(k l )  becomes multiplied by the instru- 
mental factor 2 sin 0 which is proportional to 1/kF 
or tOF '/2. In the past it is this anomalous reflectivity 
product which has been measured. 

It was important in deriving the factor 2 sin 0 that 
we had no vertical collimation between crystal and 
detector. Such an arrangement would introduce 
another function C(Si) into our integrands and after 
transformation the x integral could not then be evalu- 
ated. The more complex effect of the vertical com- 
ponent could however be then computed in a 
Gaussian approximation. 

APPENDIX II 

Changes to published literature 

Our observations suggest that in the papers by Dorner 
(1972) and Chesser & Axe (1973), in all occurrences, 
P~ and PA should be replaced as follows: 

2PM sin 0~ 
PM ~ 

(2,/r)I/2T/M 

2PA sin Oa 
PA ~ (2"/r) I/2 7]A 

(33) 

For consistency, apart from corrections detailed in 
the Appendix of Chesser & Axe (1973), in Tucciarone, 
Lau, Corliss, Delpalme & Hastings (1971)the follow- 
ing replacements should be effected" 

2PM sin 0M 
PM ~ 

2 rr rl ~ rl '~ 
(34) 

2PA sin 0A PA--" 
2 zr rl A rl 'A 
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